Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane.
نویسندگان
چکیده
The topology of carnitine palmitoyltransferase I (CPT I) in the outer membrane of rat liver mitochondria was studied using several approaches. 1. The accessibility of the active site and malonyl-CoA-binding site of the enzyme from the cytosolic aspect of the membrane was investigated using preparations of octanoyl-CoA and malonyl-CoA immobilized on to agarose beads to render them impermeant through the outer membrane. Both immobilized ligands were fully able to interact effectively with CPT I. 2. The effects of proteinase K and trypsin on the activity and malonyl-CoA sensitivity of CPT I were studied using preparations of mitochondria that were either intact or had their outer membranes ruptured by hypo-osmotic swelling (OMRM). Proteinase K had a marked but similar effect on CPT I activity irrespective of whether only the cytosolic or both sides of the membrane were exposed to it. However, it affected sensitivity more rapidly in OMRM. By contrast, trypsin only reduced CPT I activity when incubated with OMRM. The sensitivity of the residual CPT I activity was unaffected by trypsin. 3. The proteolytic fragments generated by these treatments were studied by Western blotting using three anti-peptide antibodies raised against linear epitopes of CPT I. These showed that a proteinase K-sensitive site close to the N-terminus was accessible from the cytosolic side of the membrane. No trypsin-sensitive sites were accessible in intact mitochondria. In OMRM, both proteinase K and trypsin acted from the inter-membrane space side of the membrane. 4. The ability of intact mitochondria and OMRM to bind to each of the three anti-peptide antibodies was used to study the accessibility of the respective epitopes on the cytosolic and inter-membrane space sides of the membrane. 5. The results of all these approaches indicate that CPT I adopts a bitopic topology within the mitochondrial outer membrane; it has two transmembrane domains, and both the N- and C-termini are exposed on the cytosolic side of the membrane, whereas the linker region between the transmembrane domains protrudes into the intermembrane space.
منابع مشابه
Cytological evidence that the C-terminus of carnitine palmitoyltransferase I is on the cytosolic face of the mitochondrial outer membrane.
Carnitine palmitoyltransferase I (CPT I) is a key enzyme in the regulation of beta-oxidation. The topology of this enzyme has been difficult to elucidate by biochemical methods. We studied the topology of a fusion protein of muscle-type CPT I (M-CPT I) and green fluorescent protein (GFP) by microscopical means. To validate the use of the fusion protein, designated CPT I-GFP, we checked whether ...
متن کاملEffects of starvation on the carnitine palmitoyltransferase of hepatic peroxisomes.
I t is generally accepted that the mitochondria1 carnitine palmitoyltransferases play an important role in the regulation of hepatic fatty acid oxidation [ I ] . These two enzymes express their activities on either side of the mitochondrial inner membrane that acts as a barrier to the transfer of fatty acids into the mitochondrial matrix. The enzyme that lies outsidc this barrier is located on ...
متن کاملMitochondrial Long Chain Fatty Acid Oxidation Related Enzyme Changes in Different Preeclampsia-Like Mouse Models
Most fatty acids in the human body are long-chain fatty acids. The β-oxidation of fatty acids occurs in the mitochondria. After activation of long-chain fatty acids, they need assistance from carnitine as a carrier and catalysis of carnitine palmitoyltransferase I (CPT I) in the outer mitochondrial membrane and carnitine palmitoyltransferase II (CPT II) in the inner mitochondrial membrane to en...
متن کاملExpression of novel isoforms of carnitine palmitoyltransferase I (CPT-1) generated by alternative splicing of the CPT-ibeta gene.
Carnitine palmitoyltransferase I (CPT-I) catalyses the rate-determining step in mitochondrial fatty acid beta-oxidation. The enzyme has two cognate structural genes that are preferentially expressed in liver (alpha) or fat and muscle (beta). We hypothesized the existence of additional isoforms in heart to account for unique kinetic characteristics of enzyme activity in this tissue. Hybridizatio...
متن کاملCholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids.
It has been reported that sodium cholate can separate the catalytic component of carnitine palmitoyltransferase-I (CPT-I) from a putative malonyl-CoA-binding regulatory protein capable of conferring sensitivity to malonyl-CoA on CPT-II. We found that cholate preferentially extracted a contaminating malonyl-CoA-sensitive CPT from mitochondrial inner membranes. When cholate extracts of outer memb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 323 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1997